1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1.1. DERIVADAS DIRECCIONALES Y PARCIALES

Definición 1.1. Sea $f: \mathbb{R}^n \to \mathbb{R}$, $\bar{a} \in \mathbb{R}^n$ y $\bar{v} \in \mathbb{R}^n$. Se define la derivada direccional de f en \bar{a} y en la dirección de \bar{v} como:

$$D_{\bar{v}}f(\bar{a}) = \lim_{h \to 0} \frac{f\left(\bar{a} + h \frac{\bar{v}}{||\bar{v}||}\right) - f(\bar{a})}{h}$$

 $Si \ \bar{v} \ es \ unitario, \ tenemos$

$$D_{\bar{v}}f(\bar{a}) = \lim_{h \to 0} \frac{f(\bar{a} + h\bar{v}) - f(\bar{a})}{h}$$

Definición 1.2. Derivadas parciales.

Sea $f: \mathbb{R}^n \to \mathbb{R}$ y $\bar{a} \in \mathbb{R}^n$. Entonces se define la derivada parcial i-ésima en \bar{a} como

$$\frac{\partial f}{\partial x_i}(\bar{a}) = D_{e_i} f(\bar{a}) = \lim_{h \to 0} \frac{f(\bar{a} + h\bar{e}_i) - f(\bar{a})}{h} =$$

$$= \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_n)}{h}$$

siendo $\bar{e}_i = (0, \dots, \underbrace{1}_{i}, \dots, 0)$ el vector canónico i-ésimo ($||\bar{e}_i|| = 1$).

Denotamos a las derivadas de segundo orden por

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$$

Se ha derivado primero con respecto a x_i y luego con respecto a x_i .

$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right)$$

Se ha derivado dos veces con respecto a x_i .

Teorema 1.1. Derivadas parciales mixtas. Teorema de Schwarz.

Sea $f: \mathbb{R}^n \to \mathbb{R}$ tal que $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}$, $\frac{\partial^2 f}{\partial x_j \partial x_i}$ son continuas en un entorno de \bar{a} . Entonces

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\bar{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\bar{a})$$

1.2. GRADIENTES Y DIFERENCIABILIDAD

Definición 1.3. Sea $f: \mathbb{R}^n \to \mathbb{R}$ y $\bar{a} \in \mathbb{R}^n$. Entonces se define el gradiente de f en \bar{a} como

$$\nabla f(\bar{a}) = \left(\frac{\partial f}{\partial x_1}(\bar{a}), \dots, \frac{\partial f}{\partial x_n}(\bar{a})\right)$$

Para que exista $\nabla f(\bar{a})$ deben existir todas las derivadas parciales en \bar{a} .

Definición 1.4. Sea $f: \mathbb{R}^n \to \mathbb{R}$ y $\bar{a} \in \mathbb{R}^n$. Se dice que f es diferenciable en \bar{a} si se verifica que:

1.
$$\exists \frac{\partial f}{\partial x_i}(\bar{a}) \ para \ todo \ i = 1, \dots, n$$
 2. $\lim_{\bar{h} \to \bar{0}} \frac{f(\bar{a} + \bar{h}) - f(\bar{a}) - \nabla f(\bar{a})\bar{h}}{||\bar{h}||} = 0$

La propiedad 2. también se escribe como $\lim_{\bar{x}\to\bar{a}} \frac{f(\bar{x}) - f(\bar{a}) - \nabla f(\bar{a})(\bar{x} - \bar{a})}{||\bar{x} - \bar{a}||} = 0$

En tal caso, la diferencial de f en \bar{a} se define como la aplicación lineal $Df(\bar{a}): \mathbb{R}^n \to \mathbb{R}$ tal que $Df(\bar{a})(\bar{x}) = \nabla f(\bar{a})\bar{x}$.

Propiedades. Sea $f: \mathbb{R}^n \to \mathbb{R}$ con $\bar{a} \in \mathbb{R}^n$.

- 1. Si f es diferenciable en \bar{a} , f es continua en \bar{a} . El recíproco es falso $(f(x,y) = \sqrt{|xy|})$ es continua en $\bar{a} = (0,0)$ pero no diferenciable).
- 2. Si existe $\bar{v} \in \mathbb{R}^n$ tal que $\not\equiv D_{\bar{v}}f(\bar{a})$, entonces f no es diferenciable en \bar{a} .
- 3. Si $\frac{\partial f}{\partial x_i}(\bar{x})$ son continuas en un entorno de \bar{a} , entonces f es diferenciable en \bar{a} (el recíproco es falso).
- 4. Sean $f, g: \mathbb{R}^n \to \mathbb{R}$ diferenciables en $\bar{a} \in \mathbb{R}^n$. Entonces

4.1.
$$D(f+g)(\bar{a}) = Df(\bar{a}) + Dg(\bar{a})$$

4.2.
$$D(fg)(\bar{a}) = g(\bar{a})Df(\bar{a}) + f(\bar{a})Dg(\bar{a})$$

4.3.
$$D\left(\frac{f}{g}\right)(\bar{a}) = \frac{g(a)Df(a) - f(a)Dg(a)}{g(a)^2}$$

En la regla del cociente se supone que $g(a) \neq 0$.

Teorema 1.2. Sea $f: \mathbb{R}^n \to \mathbb{R}$ diferenciable en $\bar{a} \in \mathbb{R}^n$ y sea $\bar{u} \in \mathbb{R}^n$ un vector unitario. Entonces

$$D_{\bar{u}}f(\bar{a}) = \nabla f(\bar{a})\bar{u} \ (producto \ escalar)$$

 $Si \bar{u}$ no es unitario,

$$D_{\bar{u}}f(\bar{a}) = \nabla f(\bar{a}) \frac{\bar{u}}{||\bar{u}||}$$

Como corolario de este resultado, se tiene que el valor máximo de las derivadas direccionales de f en \bar{a} se alcanza en la dirección del vector gradiente $\nabla f(\bar{a})$, y el valor absoluto de esa derivada direccional es

$$|D_{\bar{u},m\acute{a}x}f(\bar{a})| = ||\nabla f(\bar{a})||$$

Otro hecho destacable es que, dada $f: \mathbb{R}^2 \to \mathbb{R}$, el vector gradiente $\nabla f(\bar{a})$, que supondremos no nulo, es perpendicular a la curva de nivel de z = f(x, y) que pasa por \bar{a} .

De igual modo, dada $f: \mathbb{R}^3 \to \mathbb{R}$, el vector gradiente $\nabla f(\bar{a})$ es perpendicular a la superficie de nivel de t = f(x, y, z) que pasa por \bar{a} .

Definición 1.5. Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ con $\bar{a} \in \mathbb{R}^n$ y $f = (f_1, \ldots, f_m)$. Entonces se dice que f es diferenciable en \bar{a} si f_i es diferenciable \bar{a} para todo $i = 1, \ldots, m$. En tal caso, la diferencial de f en \bar{a} se define como la aplicación lineal $Df(\bar{a}): \mathbb{R}^n \to \mathbb{R}^m$

$$Df(\bar{a})(\bar{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\bar{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\bar{a}) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\bar{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\bar{a}) \end{pmatrix} \bar{x}$$

A la matriz anterior se le llama matriz jacobiana de f en \bar{a} y se denota por $Jf(\bar{a})$.

Regla de la cadena. Sean $f: \mathbb{R}^n \to \mathbb{R}^m$ y $g: \mathbb{R}^m \to \mathbb{R}^p$ tales que $g \circ f$ está definida, f es diferenciable en \bar{a} y g es diferenciable en $f(\bar{a})$. Entonces $g \circ f$ es diferenciable en \bar{a} y $D(g \circ f)(\bar{a}) = Dg(f(\bar{a}))Df(\bar{a})$.

Casos particulares de la regla de la cadena.

Caso 1. Sea z = f(x, y) una función diferenciable de variables x e y, con x = g(t), y = h(t) funciones diferenciables de variable t. Entonces z es una función diferenciable de t con

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} \quad \text{o, de modo equivalente,} \quad \frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Escrito matricialmente, se tiene

$$\frac{dz}{dt} = \begin{pmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix}$$

Caso 2. Sea z = f(x, y) una función diferenciable de variables x e y, con x = g(s, t), y = h(s, t) funciones diferenciables de variables s y t. Entonces,

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Escrito matricialmente, queda

$$\left(\begin{array}{cc} \frac{\partial z}{\partial s} & \frac{\partial z}{\partial t} \end{array}\right) = \left(\begin{array}{cc} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{array}\right) \left(\begin{array}{cc} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{array}\right)$$

Teorema 1.3. Teorema de la función implícita.

Supongamos que $F: \mathbb{R}^{n+1} \to \mathbb{R}$ tiene derivadas parciales continuas y que el punto $(\bar{x}_0, z_0) \in \mathbb{R}^{n+1}$ (con $\bar{x}_0 \in \mathbb{R}^n$ y $z_0 \in \mathbb{R}$) cumple que $F(\bar{x}_0, z_0) = 0$ y $\frac{\partial F}{\partial z}(\bar{x}_0, z_0) \neq 0$. Entonces, la ecuación $F(\bar{x}, z) = 0$ define, en un entorno del punto (\bar{x}_0, z_0) , a z como función implícita de \bar{x} , esto es, se puede encontrar una función (única y diferenciable) $f(\bar{x}) = z$ definida en un entorno V de \bar{x}_0 que cumple $F(\bar{x}, f(\bar{x})) = 0 \ \forall \bar{x} \in V$. La función f tendrá derivadas parciales:

$$\frac{\partial f}{\partial x_i} = \frac{\partial z}{\partial x_i} = -\frac{\frac{\partial F}{\partial x_i}}{\frac{\partial F}{\partial z}} \qquad con \ i = 1, \dots, n \ y \ \bar{x} = (x_1, \dots, x_n)$$

Teorema 1.4. Teorema de la función inversa.

Sea $f = (f_1, ..., f_n) : \mathbb{R}^n \to \mathbb{R}^n$ tal que f_i tiene derivadas parciales continuas para todo i = 1, ..., n y sea $f(\bar{x}_0) = \bar{y}_0$. Si el determinante jacobiano $|Jf(\bar{x}_0)|$ es distinto de cero, entonces la función f admite inversa f^{-1} en un entorno de $\bar{y}_0 = f(\bar{x}_0)$. La función f^{-1} tiene derivadas parciales continuas.

1.3. APLICACIONES

1.3.1. Derivadas direccionales máximas

Para una función diferenciable $f: \mathbb{R}^n \to \mathbb{R}$ el valor máximo de las derivadas direccionales de f en \bar{a} se alcanza en la dirección del vector gradiente $\nabla f(\bar{a})$ y el valor absoluto de ésta es $|D_{\bar{u},\max}f(\bar{a})| = ||\nabla f(\bar{a})||$.

1.3.2. Estimación por incremento y diferencial total

Definición 1.6. Diferencial total de $y = f(x_1, ..., x_n)$.

Si $y = f(x_1, ..., x_n)$ y $\Delta x_1, ..., \Delta x_n$ son incrementos de $x_1, ..., x_n$, las diferenciales de las variables independientes $x_1, ..., x_n$ son $dx_1 = \Delta x_1, ..., dx_n = \Delta x_n$ y la diferencial total de f se define como:

$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$$

Se verifica que si $\Delta x_1, \ldots, \Delta x_n$ son pequeños, entonces

$$\Delta y \simeq \frac{\partial f}{\partial x_1} \Delta x_1 + \dots + \frac{\partial f}{\partial x_n} \Delta x_n$$

5

1.3.3. Geometría diferencial

1. Planos tangentes y rectas normales a una superficie.

Sea S una superficie definida en \mathbb{R}^3 por la ecuación F(x, y, z) = 0 y sea $\bar{a} = (a_1, a_2, a_3) \in S$ ($F(\bar{a}) = 0$). Entonces, si F es diferenciable en \bar{a} , el plano tangente a S en \bar{a} es:

$$\pi \equiv \{(x - a_1)\frac{\partial F}{\partial x}(\bar{a}) + (y - a_2)\frac{\partial F}{\partial y}(\bar{a}) + (z - a_3)\frac{\partial F}{\partial z}(\bar{a}) = 0\}$$

Observación 1.1. Un vector normal al plano tangente a S en \bar{a} es $\nabla F(\bar{a})$, y la recta normal a S en \bar{a} es

$$r \equiv \begin{cases} x = a_1 + \lambda \frac{\partial F}{\partial x}(\bar{a}) \\ y = a_2 + \lambda \frac{\partial F}{\partial y}(\bar{a}) \\ z = a_3 + \lambda \frac{\partial F}{\partial z}(\bar{a}) \end{cases}$$

 $con \ \lambda \in \mathbb{R}.$

2. Recta tangente y plano normal a una curva en el espacio.

Sea $\mathcal C$ una curva en el espacio definida por la intersección de dos superficies

$$C = \begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

y sea $\bar{p} = (p_1, p_2, p_3) \in \mathcal{C}$ $(F(\bar{p}) = G(\bar{p}) = 0)$ con f y G differenciables en \bar{p} . Entonces, el vector tangente a \mathcal{C} en \bar{p} es $\bar{u} = (u_1, u_2, u_3)$

$$\bar{u} = \nabla F(\bar{p}) \times \nabla G(\bar{p}) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial F}{\partial x}(\bar{p}) & \frac{\partial F}{\partial y}(\bar{p}) & \frac{\partial F}{\partial z}(\bar{p}) \\ \frac{\partial G}{\partial x}(\bar{p}) & \frac{\partial G}{\partial y}(\bar{p}) & \frac{\partial G}{\partial z}(\bar{p}) \end{vmatrix} =$$

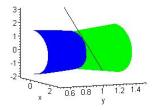
$$= \left(\left| \begin{array}{cc} \frac{\partial F}{\partial y}(\bar{p}) & \frac{\partial F}{\partial z}(\bar{p}) \\ \frac{\partial G}{\partial y}(\bar{p}) & \frac{\partial G}{\partial z}(\bar{p}) \end{array} \right|, - \left| \begin{array}{cc} \frac{\partial F}{\partial x}(\bar{p}) & \frac{\partial F}{\partial z}(\bar{p}) \\ \frac{\partial G}{\partial z}(\bar{p}) & \frac{\partial G}{\partial z}(\bar{p}) \end{array} \right|, \left| \begin{array}{cc} \frac{\partial F}{\partial x}(\bar{p}) & \frac{\partial F}{\partial y}(\bar{p}) \\ \frac{\partial G}{\partial x}(\bar{p}) & \frac{\partial G}{\partial y}(\bar{p}) \end{array} \right| \right)$$

6

La recta tangente a C en \bar{p} es

$$r \equiv \begin{cases} x = p_1 + \lambda u_1 \\ y = p_2 + \lambda u_2 \\ z = p_3 + \lambda u_3 \end{cases}$$

con $\lambda \in \mathbb{R}$.



El plano normal a \mathcal{C} en \bar{p} es

$$\pi \equiv \{(x - p_1)u_1 + (y - p_2)u_2 + (z - p_3)u_3 = 0\}$$

.3.4. Extremos relativos

Definición 1.7. Sea $f: \mathbb{R}^n \to \mathbb{R}$ y $\bar{a} \in \mathbb{R}^n$. Entonces se dice que f alcanza en \bar{a} :

1. Un máximo local si existe una bola $B(\bar{a}, \epsilon)$ centrada en \bar{a} y de radio $\epsilon > 0$ tal que $f(\bar{x}) \leq f(\bar{a})$ para todo $\bar{x} \in B(\bar{a}, \epsilon)$.

2. Un mínimo local si $\exists B(\bar{a}, \epsilon)$ tal que $f(\bar{x}) \geq f(\bar{a})$ para todo $\bar{x} \in B(\bar{a}, \epsilon)$.

3. Un punto de ensilladura si para todo $\epsilon > 0$ existen $\bar{x}, \bar{y} \in B(\bar{a}, \epsilon)$ tales que $f(\bar{x}) > f(\bar{a})$ y $f(\bar{y}) < f(\bar{a})$.

Definición 1.8. Sea $f: \mathbb{R}^n \to \mathbb{R}$. Se dice que f tiene un punto crítico en \bar{a} si $\nabla f(\bar{a}) = \bar{0}$ o no existe alguna de las derivadas parciales $\frac{\partial f}{\partial x_i}(\bar{a})$.

Observación 1.2. Dada la superficie S de ecuación z = f(x,y) (implícitamente F(x,y,z) = 0 con F(x,y,z) = f(x,y) - z) y dado $\bar{a} = (a_1,a_2)$, el plano tangente en $\bar{p} = (a_1,a_2,f(a_1,a_2)) \in S$ es

$$\pi \equiv \{(x - a_1)\frac{\partial f}{\partial x}(\bar{a}) + (y - a_2)\frac{\partial f}{\partial y}(\bar{a}) - (z - f(\bar{a})) = 0\}$$

Si f tiene un punto crítico en \bar{a} , el plano tangente será $z=a_3=f(\bar{a})$ (plano horizontal), ya que $\frac{\partial f}{\partial x}(\bar{a})=\frac{\partial f}{\partial y}(\bar{a})=0$. Por tanto, una condición necesaria para que f tenga en \bar{a} un extremo relativo es que \bar{a} sea un punto crítico de f.

Análisis de los puntos críticos

Definición 1.9. Sea $f: \mathbb{R}^n \to \mathbb{R}$ y $\bar{a} \in \mathbb{R}^n$ tal que existen y son continuas las derivadas de segundo orden $\frac{\partial^2 f}{\partial x_i \bar{\partial} x_j}$ para todo $i, j = 1, \ldots, n$ en $B(\bar{a}, \epsilon)$. Entonces se define la matriz hessiana de f en \bar{a} como

$$H_f(\bar{a}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(\bar{a}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\bar{a}) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\bar{a}) \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_i \partial x_j}(\bar{a}) \end{pmatrix}.$$

Por el teorema de Schwarz, la matriz hessiana es simétrica. Llamaremos hessiano de f en \bar{a} al determinante de la matriz hessiana.

Teorema 1.5. En las condiciones de la definición anterior, sea \bar{a} un punto crítico de f. Entonces:

1. Si $H_f(\bar{a})$ es definida positiva, f tiene un mínimo local en \bar{a} .

- 2. Si $H_f(\bar{a})$ es definida negativa, f tiene un máximo local en \bar{a} .
- 3. Si $H_f(\bar{a})$ es indefinida, f tiene un punto de ensilladura en \bar{a} .

Corolario 1.1. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ en las condiciones de la última definición y sea \bar{a} un punto crítico de f con

$$H_f(\bar{a}) = \left(\begin{array}{cc} A & B \\ B & C \end{array}\right)$$

 $y |H_f(\bar{a})| = D$. Entonces:

- 1. Si D < 0, f tiene un punto de ensilladura en \bar{a} .
- 2. Si D > 0 y A > 0, f tiene un mínimo local en \bar{a} .
- 3. Si D > 0 y A < 0, f tiene un máximo local en \bar{a} .
- 4. Si D = 0 no se concluye nada.

Multiplicadores de Lagrange

Cuando se intenta resolver un problema de máximos y mínimos sometido a ligaduras, se suele hacer uso de los multiplicadores de Lagrange. Si deseamos encontrar los extremos relativos de la función $f(\bar{x})$ sometida a las ligaduras $\{g_1(\bar{x}) = 0, \ldots, g_r(\bar{x}) = 0\}$, con f, g_1, \ldots, g_r derivables y con derivadas parciales continuas, se considera

$$F(\bar{x}) = f(\bar{x}) + \lambda_1 g_1(\bar{x}) + \dots + \lambda_r g_r(\bar{x}),$$

donde los λ_i son constantes denominadas multiplicadores de Lagrange. Los extremos condicionados de f serán puntos críticos de F.

Teorema 1.6. Teorema de Lagrange.

Sean f(x,y) y g(x,y) con primeras derivadas parciales continuas y tales que f tiene un extremo en el punto (x_0,y_0) sobre la curva de ligadura $\{g(x,y)=0\}$. Si $\nabla g(x_0,y_0) \neq 0$, existe un número real λ tal que $\nabla f(x_0,y_0) = \lambda \nabla g(x_0,y_0)$.

Corolario 1.2. Método de los multiplicadores de Lagrange.

Supongamos que f(x,y), sujeta a la ligadura $\{g(x,y)=0\}$, tiene un extremo, donde f y g están en las condiciones del teorema de Lagrange. Para detectar los extremos de f basta resolver el sistema

$$\{\nabla f(x,y) = \lambda \nabla g(x,y), g(x,y) = 0\}$$

y evaluar f en cada uno de los puntos solución. El mayor y el menor de los valores obtenidos serán el máximo y el mínimo de f(x,y) sometida a la ligadura $\{g(x,y)=0\}$.