1. DERIVACIÓN

1.1. DEFINICIONES Y RESULTADOS PRINCIPALES

Definición 1.1. Derivada.

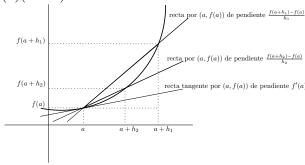
Sea f una función definida en un intervalo abierto I con $a \in I$. Decimos que f es derivable en a si existe y es real el límite

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \in \mathbb{R}$$

A f'(a) se le denomina derivada de f en a y también se denota por

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

La derivada f'(a) mide la variación de f respecto de la variación de x en el punto a. La pendiente de la recta tangente a la gráfica de f en el punto (a, f(a)) es precisamente m = f'(a). La ecuación de dicha recta es, por tanto, y - f(a) = f'(a)(x - a).



Si f está definida en un intervalo a la derecha de a, $[a, a + \epsilon)$, o a la izquierda de a, $(a - \epsilon, a]$, los números

$$f'_{+}(a) = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h}$$
 $f'_{-}(a) = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h}$,

en caso de existir, se denominan derivada por la derecha de a y derivada por la izquierda de a, respectivamente.

La función f es derivable en un intervalo abierto I si lo es en todos sus puntos. Si f es derivable en I, la función que en cada punto $x \in I$ toma el valor f'(x) se denomina función derivada de f g se denota por $g' = \frac{df}{dx}$.

Proposición 1.1. La derivada f'(a) existe si y sólo si existen y son iguales $f'_{+}(a) = f'_{-}(a)$.

Teorema 1.1. Si f es derivable en a, entonces es continua en a.

2 1 DERIVACIÓN

Definición 1.2. Diferencial.

Sea y = f(x) una función derivable en un punto x_0 . Si $P = (x_0, f(x_0))$ es el punto correspondiente de la gráfica, la recta tangente a la misma en dicho punto tiene pendiente $f'(x_0)$ y su ecuación es $y - f(x_0) = f'(x_0)(x - x_0)$. Por diferenciales dx y dy (diferencial de x y diferencial de y) entendemos los incrementos en las variables x e y asociados a esta recta tangente. Así, dx es un incremento Δx en la variable independiente x, esto es,

$$dx = \Delta x$$

La diferencial dy de la variable dependiente y es el correspondiente incremento en y en la recta tangente, esto es,

$$dy = f'(x_0)dx$$

Obsérvese que se puede escribir la igualdad anterior en la forma $\frac{dy}{dx} = f'(x_0)$. De modo que, con esta notación, la derivada aparece escrita como un cociente.

Téngase en cuenta que el incremento real en la y cuando la x varía una cantidad pequeña $\Delta x = dx$ es

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx dy = f'(x_0)dx.$$

De modo que dy es una buena aproximación al cambio real en y, Δy , siempre que Δx sea pequeño.

Propiedades de las derivadas.

■ Sean f, g derivables en a y sea $c \in \mathbb{R}$. Entonces $f \pm g$, cf, fg también son derivables en a con

$$(f \pm g)'(a) = f'(a) \pm g'(a)$$

 $(cf)'(a) = cf'(a)$
 $(fg)'(a) = f'(a)g(a) + f(a)g'(a)$

Si además $g(a) \neq 0$, entonces f/g es derivable en a y

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

Regla de la cadena. Si f es derivable en a y g lo es en f(a), entonces $g \circ f$ es derivable en a y

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

■ Derivada de la función inversa. Sea f derivable en $a \in (c, d)$ con $f'(a) \neq 0$. Entonces existe f^{-1} en un entorno de f(a) y

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

■ Derivación implícita. Cuando en una ecuación implícita F(x,y) = 0 no es sencillo despejar y en función de x y se desea calcular la derivada y'(x) = f'(x), se realiza la derivación implícita. Veámoslo con un ejemplo.

Hallemos $\frac{dy}{dx}$ sabiendo que $y^3+y^2-5y-x^2=-4$. Derivamos ambos miembros de la igualdad con respecto a x:

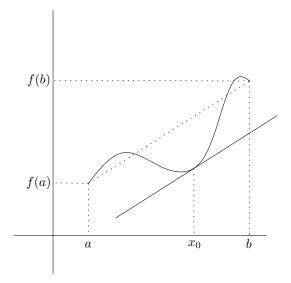
$$\frac{d}{dx}[y^3 + y^2 - 5y - x^2] = \frac{d}{dx}[-4] \Rightarrow 3y^2y' + 2yy' - 5y' - 2x = 0 \Rightarrow$$

$$\Rightarrow \frac{dy}{dx}(3y^2 + 2y - 5) = 2x \Rightarrow \frac{dy}{dx} = \frac{2x}{3y^2 + 2y - 5}$$

Teorema 1.2. Teorema del valor medio.

Sea f continua en [a,b] y derivable en (a,b). Entonces existe $x_0 \in (a,b)$ tal que

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$



Teorema 1.3. Teorema del valor medio generalizado de Cauchy.

Si f y g son continuas en [a,b], derivables en (a,b) y, además, $g(a) \neq g(b)$, existe algún $c \in (a,b)$ tal que

4 1 DERIVACIÓN

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Teorema 1.4. Regla de L'Hôpital.

Sean f, g derivables en un entorno abierto (a, b) que contiene a c (salvo, quizá, en el propio c). Si $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ y existe el límite $\lim_{x\to c} \frac{f'(x)}{g'(x)}$, entonces

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

El enunciado es válido también cuando

$$\lim_{x \to c} f(x) = \pm \infty \ y \ \lim_{x \to c} g(x) = \pm \infty.$$

El resultado se formula de modo análogo para $c = \pm \infty$.

Si en la expresión $\lim_{x\to c} \frac{f'(x)}{g'(x)}$ se vuelve a presentar una indeterminación del tipo 0/0 ó ∞/∞ , se puede volver a aplicar la regla de L'Hôpital (si se cumplen las hipótesis de aplicabilidad).

1.2. APROXIMACIONES POR POLINOMIOS

Teorema 1.5. Si f es una función con derivadas hasta el orden n en un punto a, entonces existe un polinomio (único) P(x) de grado menor o igual que n tal que

$$P(a) = f(a), P'(a) = f'(a), \dots, P^{n}(a) = f^{n}(a).$$

Dicho polinomio viene determinado por la expresión

$$P(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}.$$

Al polinomio anterior se le llama polinomio de Taylor de orden n de la función f en el punto a. Se denota por $P_{n,a}(x)$. Además, se tiene que

$$\lim_{x \to a} \frac{f(x) - P_{n,a}(x)}{(x - a)^n} = 0.$$

Definición 1.3. Si f es una función para la cual existe $P_{n,a}(x)$, se define el resto de Taylor de orden n de f en a como

$$R_{n,a}(x) = f(x) - P_{n,a}(x)$$

Teorema 1.6. Teorema de Taylor.

Si las funciones f, f', \ldots, f^{n+1} están definidas sobre [a, x], existe $t \in (a, x)$ tal que el resto de Taylor de orden n de f en a viene dado por

$$R_{n,a}(x) = \frac{f^{n+1}(t)}{(n+1)!}(x-a)^{n+1}.$$

Ésta es la forma de Lagrange del resto. La fórmula de Taylor se escribe como

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{n}(a)}{n!}(x - a)^n + \frac{f^{n+1}(t)}{(n+1)!}(x - a)^{n+1} = P_{n,a}(x) + R_{n,a}(x).$$

Cuando la fórmula de Taylor se desarrolla en el punto a=0, obtenemos la fórmula de McLaurin

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(t)}{(n+1)!}x^{n+1}.$$

El polinomio de Taylor de orden n es el polinomio de grado menor o igual que n que mejor aproxima a f en un entorno de a (tiene las mismas derivadas que la función hasta el orden n en el punto a). El error $|R_{n,a}(x)| = |f(x) - P_{n,a}(x)|$ es el valor absoluto del resto y, en un sentido amplio, será tan pequeño como sea necesario, siempre que se escoja n suficientemente grande.

Desarrollos de Taylor más frecuentes.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + R_{n}$$

$$\operatorname{sen} x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} + R_{n}$$

$$\operatorname{cos} x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{n+1} \frac{x^{2n-2}}{(2n-2)!} + R_{n}$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + R_{n}$$

1.3. ESTUDIO GRÁFICO DE UNA FUNCIÓN

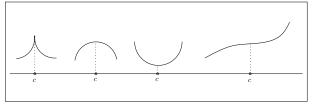
Definición 1.4. Sea f definida en un intervalo I con $c \in I$. Entonces f(c) es el valor mínimo (máximo) de f en I si $f(c) \leq f(x)$ ($f(c) \geq f(x)$) para todo $x \in I$.

Los valores máximo y mínimo de una función en un intervalo I, de existir, son los llamados valores extremos de la función en dicho intervalo (también llamados máximo y mínimo absolutos en I).

6 1 DERIVACIÓN

Definición 1.5. Si existe un intervalo abierto (a,b) que contiene a c y en el que f(c) es máximo (mínimo), entonces f(c) se llama máximo relativo $(mínimo\ relativo)$ de f.

Definición 1.6. Un punto $c \in I$ es un punto crítico de f si f no es derivable en c ó f'(c) = 0.



Observación 1.1. Los extremos relativos se alcanzan en los puntos críticos. Si f tiene un extremo relativo en x = c, entonces c es un punto crítico de f.

Definición 1.7. Una función f es creciente (decreciente) en un intervalo I si para cualquier par de puntos $x_1 < x_2$ de I se tiene que $f(x_1) < f(x_2)$ $(f(x_1) > f(x_2))$. De esta función decimos que es estrictamente monótona en I.

Observación 1.2. Sea f continua en un intervalo cerrado [a,b] y derivable en (a,b). Entonces:

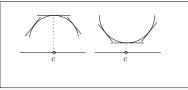
Si f'(x) > 0 (f'(x) < 0) para todo $x \in (a,b)$, entonces f es creciente (decreciente) en [a,b].

Si f'(x) = 0 para todo $x \in (a, b)$, entonces f es constante en [a, b].

Observación 1.3. Criterio de la primera derivada.

Sea f continua en I=(a,b) y sea $c\in I$ un punto crítico de f. Supongamos que f es derivable en un entorno de c salvo, quizá, en el propio c. Entonces:

Si f'(x) cambia de positiva a negativa (de negativa a positiva) en c, f(c) es un máximo relativo (mínimo relativo) de f.



Definición 1.8. Concavidad y convexidad.

Sea f derivable en un intervalo abierto I=(a,b). La gráfica de f es cóncava (convexa) en I si f' es creciente (decreciente) en ese intervalo. Un punto $c \in I$ es un punto de inflexión de f si en él se produce un cambio de concavidad a convexidad o viceversa.

7

Observación 1.4. Criterio de concavidad y convexidad.

Sea f una función tal que f'' existe en un intervalo I = (a,b). Si f''(x) > 0 (f''(x) < 0) para todo $x \in I$, la gráfica de f es cóncava (convexa) en I.

Observación 1.5. Si c es un punto de inflexión de f, entonces, o bien f''(c) = 0 ó f''(c) no está definida.

Observación 1.6. Sea f'(c) = 0 de modo que f'' existe y es continua en un intervalo que contiene a c. Entonces:

- 1. Si f''(c) > 0, f tiene en c un mínimo relativo.
- 2. Si f''(c) < 0, f tiene en c un máximo relativo.
- 3. Si existen y son continuas en un intervalo que contiene a c todas las derivadas hasta f^{n} , con $f'(c) = f''(c) = \cdots = f^{n-1}(c) = 0$ y $f^{n}(c) \neq 0$, se tiene:
 - 3.1 Si n es par y $f^{(n)}(c) > 0$, f tiene un mínimo relativo en c.
 - 3.2 Si n es par y $f^{(n)}(c) < 0$, f tiene un máximo relativo en c.
 - 3.3 Si n es impar, f tiene un punto de inflexión en c.

Definición 1.9. Asíntotas.

Asíntota horizontal: $\{y = a\}$ se obtiene si $\lim_{x \to \pm \infty} f(x) = a$.

Asíntota vertical: $\{x = a\}$ se obtiene si $\lim_{x \to a} f(x) = \pm \infty$.

Asíntota oblicua: $\{y = mx + n\}$ se obtiene si $\lim_{x \to \pm \infty} \frac{f(x)}{x} = m$ y $\lim_{x \to \pm \infty} \{f(x) - mx\} = n$.

Elementos principales de una gráfica

1. Dominio de f,

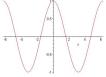
$$D(f) = \{ x \in \mathbb{R} : f(x) \in \mathbb{R} \}$$

y recorrido o conjunto imagen de f,

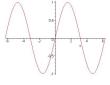
$$Im(f) = \{ y \in \mathbb{R} : \exists x \in D(f) \text{ con } f(x) = y \}$$

- 2. Cortes con los ejes OX y OY.
- 3. Periodicidad. Menor valor T tal que f(x+T)=f(x) para cualquier $x\in D(f)$.

4. Simetrías. Simetría par si f(-x) = f(x) para todo $x \in D(f)$



Simetría impar si f(-x) = -f(x) para todo $x \in D(f)$.



- 5. Asíntotas.
- 6. Puntos críticos. Crecimiento, decrecimiento y extremos.
- 7. Concavidad, convexidad y puntos de inflexión.

9

1.4. TABLA DE DERIVADAS

Tabla de derivadas elementales.

1.
$$[u^n(x)]' = n u^{n-1}(x) u'(x)$$

2.
$$sen'[u(x)] = cos[u(x)] u'(x)$$

3.
$$\cos'[u(x)] = -\sin[u(x)] u'(x)$$

4.
$$\operatorname{tg'}[u(x)] = \frac{u'(x)}{\cos^2[u(x)]} = \{1 + \operatorname{tg}^2[u(x)]\}u'(x)$$

5.
$$\sec'[u(x)] = \sec[u(x)] \operatorname{tg} [u(x)] u'(x)$$

6.
$$\operatorname{cosec}'[u(x)] = -\operatorname{cosec}[u(x)] \operatorname{cotg}[u(x)] u'(x)$$

7.
$$\cot g'[u(x)] = -\frac{u'(x)}{\sin^2[u(x)]} = -\{1 + \cot g^2[u(x)]\}u'(x)$$

8.
$$\log_a'[u(x)] = \frac{\log_a[u(x)]}{u(x)} u'(x)$$
 para $a > 0$, $a \neq 1$

9.
$$\ln'[u(x)] = \frac{u'(x)}{u(x)}$$

10.
$$[a^{u(x)}]' = a^{u(x)} \ln(a) u'(x)$$

11.
$$[e^{u(x)}]' = e^{u(x)} u'(x)$$

12.
$$\arcsin[u(x)] = \frac{u'(x)}{\sqrt{1 - u^2(x)}}$$

13.
$$\arccos'[u(x)] = -\frac{u'(x)}{\sqrt{1 - u^2(x)}}$$

14.
$$arctg'[u(x)] = \frac{u'(x)}{1 + u^2(x)}$$

15.
$$\operatorname{arcsec'}[u(x)] = \pm \frac{u'(x)}{u(x)\sqrt{1+u^2(x)}} \begin{cases} + \operatorname{si} u(x) > 1 \\ - \operatorname{si} u(x) < 1 \end{cases}$$

16.
$$\operatorname{arccosec'}[u(x)] = \mp \frac{u'(x)}{u(x)\sqrt{1+u^2(x)}} \begin{cases} -\sin u(x) > 1 \\ +\sin u(x) < 1 \end{cases}$$

17.
$$\operatorname{arccotg}'[u(x)] = -\frac{u'(x)}{1 + u^2(x)}$$

1 DERIVACIÓN

18.
$$sh'[u(x)] = ch[u(x)] u'(x)$$

19.
$$ch'[u(x)] = sh[u(x)] u'(x)$$

20.
$$th'[u(x)] = sech^2[u(x)] u'(x) = [1 - th^2(x)] u'(x)$$

21.
$$\operatorname{sech}'[u(x)] = -\operatorname{sech}[u(x)] \operatorname{th}[u(x)] u'(x)$$

22.
$$\operatorname{cosech}'[u(x)] = -\operatorname{cosech}[u(x)] \operatorname{coth}[u(x)] u'(x)$$

23.
$$\coth'[u(x)] = -\operatorname{cosech}^2[u(x)] u'(x) = [1 - \coth^2(x)] u'(x)$$

24.
$$\operatorname{argsh}'[u(x)] = \frac{u'(x)}{\sqrt{1 + u^2(x)}}$$

25.
$$\operatorname{argch}'[u(x)] = \frac{u'(x)}{\sqrt{u^2(x) - 1}}$$

26.
$$\operatorname{argth}'[u(x)] = \frac{u'(x)}{1 - u^2(x)}, \mid u(x) \mid < 1$$

27.
$$\operatorname{argsech}'[u(x)] = -\frac{u'(x)}{u(x)\sqrt{u^2(x)-1}}$$

28.
$$\operatorname{argcosech}'[u(x)] = -\frac{u'(x)}{u(x)\sqrt{u^2(x)+1}}$$

29.
$$\operatorname{argcoth'}[u(x)] = \frac{u'(x)}{1 - u^2(x)}, \mid u(x) \mid > 1$$

Propiedades de las derivadas.

1.
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

2.
$$[C f(x)]' = C f'(x)$$

3.
$$[f(x) g(x)]' = f'(x) g(x) + f(x) g'(x)$$

4.
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) g(x) - f(x) g'(x)}{g^2(x)}$$

5. Regla de la cadena:
$$\{f[g(x)]\}' = f'[g(x)] g'(x)$$

6. Derivada de la función inversa: Si
$$y=f(x)$$
 y $x=f^{-1}(y)=g(y), \ \ f'(x)$ $g'(y)=1$